*#zBlackBerry.

DEVCON 2010

Layout, Configure and Build Strategies
for BlackBerry Apps

Derek Konigsberg
COM12
September 29t 2010

L:_I': VE working together,

Session Surveys DEVCON 2010

* Remember to complete your breakout
session evaluation in one of two ways:

— On your BlackBerry® smartphone — use the
DEVCON 2010 mobile guide, from Pyxis

— Login to My Scheduler at one of the
Cyber Zone locations or on your PC

Introduction DEVCON 2010

* About me
— Derek Konigsberg — dkonigsberg@logicprobe.org
— Desktop Java developer by day
— Mobile Java developer by night

* BlackBerry platform involvement

— Active member of the community, having presented on both
BlackBerry Java Development and Open-Source Software

— Best known for the “LogicMail “ standalone E-Mail client application

e http://logicmail.sf.net/

* The reason | got started developing for BlackBerry
* Has become a popular alternative to BES/BIS offerings

e Supports OS 4.2 through OS 6.0 from a single source tree

http://logicmail.sf.net/�

Overview DEVCON 2010

Introduction to the environment
* Project layout approaches

e Source control considerations

* Build automation

e Summary and conclusions

What we want to accomplish DEVCON 2010

e Support as many BlackBerry OS versions as possible
— Using a single code base with maximal reuse
— Taking advantage of features in newer BlackBerry OS versions
— Releasing for all OS versions in tandem
* Make life easy for the individual developer
— Single IDE workspace configuration

— Equally easy to test on all supported OS versions

e Support configuration management, continuous integration,
and build automation

= BlackBerry.

Or in other words... CON 2010

=% J2MEUnit
5 src
2 res
=i JRE System Library [ElackBerry JRE4.5.0]
(= deliverables
. - Recall
= BlackBerry_App_Descriptorxml Vession- 1,00
=% recall Fatform: 5.0.0.535
@ src CRM 114 TR o
G res apE CRM 114
=i JRE System Library [ElackBerry JRE4.5.0]
= deliverables
&2z BlackBerry_App_Descriptorxml
=% recall_lib
5 src
2 org.logicprobe.recall

[J] AbstractScreenProviderjava
[J] ChoiceCodeField java

[J] CodeValidatorjava

[1] Platforminfo.java

[J] PlatformInfoBB45 java

[3] PlatformUtils java

[1] RecallApp.java

[J] RecallScreen java

[J] ScreenProvider.java

[J] standardScreen.java

[J] UiFactory.java

[J] UiFactoryBB45.java
2 res

Fecal
=i JRE System Library [ElackBerry JRE4.5.0] wersion: 1.9.0
P Piathorme 5.0.C.535
? deliverables . ey Knynoand
=iz BlackBerry_App_Descriptorxml| M rlrl'_:_,"r L5044
(2 recall_lib_bba6 " Keybasrd TN
5 src

= res CRM 114
=i JRE System Library [ElackBerry JRE 4.6.0]
= deliverables
&2z BlackBerry_App_Descriptorxml

:5 recall_lib_bb50
% src
2 res
=i JRE System Library [ElackBerry JRE 5.0.0]
= deliverables
&2z BlackBerry_App_Descriptorxml

=% recall_tests
5 src
2 res
=i JRE System Library [ElackBerry JRE4.5.0]
= deliverables

&2z BlackBerry_App_Descriptorxml

Two environments to consider DEVCON 2010

 The Developer's Workstation
— Uses the Eclipse plugin as it is intended
— Contains the entire project within a single workspace
— Testing on different BlackBerry OS versions needs to be simple

— Running unit tests should be as simple as possible

* The Build Server

— Uses a scripted build process

— Build artifacts become more important than the projects they are
created from

— Fully automated, including signing, for multiple BlackBerry OS versions

Project Layout
Preprocessor vs. Libraries

DEVCON 2010

* The preprocessor approach is very
tempting...

It seems very simple to use

It allows one code library to target all
supported BlackBerry OS API versions

* However...

You might still have issues if you want
to exclude whole files

Java tools really do not like
preprocessors

Eclipse will get very annoyed with
you, and cover your code in red

squiggles

You have to change configurations
and rebuild for each OS version you
want to test on

Libraries might seem complicated at
first...

Need more projects, with different
OS APl version dependencies

Selectively loading code can be tricky

But its well worth it:

Eclipse is happy with your source
code

Will not accidentally break API
compatibility

Testing a different BlackBerry OS API
is as simple as running a different
simulator configuration

With some practices and patterns, you can completely avoid the preprocessor

Project Layout

Eclipse Projects | CON 2010

e “Library” projects:
— recall_lib — main application code

* Targets lowest-common-denominator API version

— recall_lib_bb46, recall_lib_bb50
* Separate libraries for each additionally-supported API version

e Can depend on each other, for maximal reuse
— J2MEUnit — unit test support library
* “BlackBerry Application” projects:
— recall — main and alternate entry points

— recall_tests — unit tests, and entry point for running unit tests

Project Layout —
Dependency Tree CON 2010

recall_lib recall_lib_bb46 recall_lib_bb50 J2MEUnit

recall tests

Loading the right code at runtime DEVCON 2010

» BlackBerry/J2ME lacks real reflection
— Real reflection would make this a lot easier

— At least you do have “Class.forName()”

* The “Abstract Factory Pattern” is your friend

— Top-level abstract class: ThingFactory
* Knows the fully-qualified names of all subclasses, as strings
e Has the usual singleton “getinstance()” method
e Has abstract methods for different functionality
— Platform-specific subclasses: ThingFactoryBB45, ThingFactoryBB46
* Can inherit from each other, in order

* Implement functionality not available in the base API

ThingFactory DEVCON 2010

public abstract class ThingFactory {
private static ThingFactory instance;
private static String[] factoryClasses = {

¥

public static synchronized ThingFactory getlnstance() {
if(instance == null) {

}

return instance;

}

public abstract Field getThingField();

PlatformUtils WCON 2010

public static Object getFactorylnstance(String[] factoryClasses) {
// Get a class reference for the concrete factory
Class factoryClass = null;
for(int 1=0; i<factoryClasses.length; i++) {
try {

} catch (ClassNotFoundException e) { }
if(factoryClass = null) { break; }
}
if(factoryClass == null) {
throw new RuntimeException("Unable to instantiate factory');

// Instantiate the concrete factory
try {

return instance;
} catch (InstantiationException e) {

throw new RuntimeException('Unable to instantiate " + factoryClass.getName());
} catch (1llegalAccessException e) {

throw new RuntimeException('Unable to instantiate " + factoryClass.getName());

Additional uses of platform factories DEVCON 2010

* |nstantiating different fields or screens, depending on platform
— Touchscreen vs. Keyboard
— BrowserField vs BrowserField2

— RIM-provided FilePicker vs custom-written FilePicker

* Providing multiple versions of your "open a network
connection" code

— Minor variations from 4.2 to 4.7
— Completely new APl in 5.0+
* Providing top-level platform-info utility methods

— "What OS am | running?" varies by API version

— "Do | have a touchscreen?" method call is unavailable pre-4.7

Platform-dependent base class problem

The situation | CON 2010

* Sometimes you have a standard parent class, used all over

— This class provides hooks to your application’s infrastructure code

— You might want to have different standard behavior depending on OS
version or device input type

* This class inherits directly from a RIM framework class
— That framework class keeps evolving

— You need to override certain methods that don't exist on older APIs,

and those methods have arguments of types that don't exist on older
APIs

— For example: net.rim.device.api.ui.Screen
* New in 4.7: Screen.touchEvent(TouchEvent message)

* More new membersin: 3.6.0, 4.0.0, 4.0.2, 4.2.0,4.3.0,4.6.1,4.7.0, 6.0.0

Platform-dependent base class problem

Available choices | CON 2010

* This leaves you with the following choices:

— Use the preprocessor
* Sure, its tempting here
* But then you lose the advantages of being preprocessor-free
— Create platform-library subclasses
e Suddenly you have to subclass all of your screens
* You lose the advantages of a common parent class
— Refactor to avoid inheriting from the framework
* We can transform an inheritance problem into composition
* With composition, this fits very nicely with our factories

e Can build different screens depending on OS version and input method

Platform-dependent base class problem

The composition approach CON 2010

e StandardScreen, StandardTouchScreen
— Inherits from the framework; fairly lightweight and stub-like
— Exists in as many variations as necessary for platform support
— Successive versions can inherit from each other for reuse
e ScreenProvider interface
— Specifies all methods of RIM's screen class you need access to
— Has no APl dependencies past your base API
— Contains additional methods your StandardScreen may need
e AbstractScreenProvider
— Boilerplate implementation of StandardScreen
— Provides standard implementations of most methods

— Also has no APl dependencies past your base platform

Platform-dependent base class problem

The composition approach CON 2010

net.rim.device.api.ui.container.MainScreen

7

StandardScreen

el BN

AppHomeScreen AppConfigScreen AppActionScreen

net.rim.device.api.ui.container.MainScreen

7

StandardScreen <<interface>>
ScreenProvider

i

AbstractScreenProvider

TN

AppHomeScreen AppConfigScreen AppActionScreen

Source control : CON 2010

* What to check in: * What to explicitly ignore:
— Nothing at the workspace — At the workspace level:
level

* .metadata/

— At the project level: — At the project level:

* .project .
* .locale_interfaces/
e .classpath

* .preprocessed/

* bin/

* .settings/org.eclipse.jdt.core.prefs
* BlackBerry_App_Descriptor.xml
o res/** * deliverables/

° src/**

Note: These lists may change as RIM updates their development tools

Build Automation
Output Choices

Follow the IDE project structure

Pros

Maintains uniformity between
environments

Minimizes total number of COD files

Maximizes the number of per-install COD
files

Possible library-linking issues

Still may have to do multiple builds of the
startup project to avoid compatibility
mode on touch devices

Increases complexity of ALX and JAD files

DEVCON 2010

lgnore the project structure and
build it flat

* Pros

Minimizes the number of per-install COD
files

Users only install a minimal, flat, COD
sibling set

No library-linking issues

ALX and JAD files are simpler

Minor issues with deprecated/changed
APls

More total COD files to build/sign

Deployment may not exactly match
development

Build Automation

Toolchain DEVCON 2010

* Apache Ant - http://ant.apache.org/

e BlackBerry Ant Tools - http://bb-ant-tools.sf.net/

— Runs the RAPC compiler
— Runs the SignatureTool
— Creates the ALX file and directory structure

— Updates JAD file and extracts COD siblings

e RIM Build Tools (for each target OS version)

— Known by many names:
e BlackBerry Java SDK (Eclipse plugin)
e BlackBerry JDE (legacy IDE)

e BlackBerry JDE Component Package (just the build tools)

http://ant.apache.org/�
http://bb-ant-tools.sf.net/�

Build Automation

Toolchain — RIM Build Tools CON 2010

e All you really need is a subset of the distribution:
— bin/
* rapc.jar, preverify.exe, SignatureTool.jar
e sigtool.csk, sigtool.db
— lib/

* net_rim_api.jar
* You can build on a *NIX server, if you:

— Grab another version of "preverify" from non-RIM J2ME tools

— Fix the hard-coded backslashes in rapc.jar and SignatureTool.jar
* Only necessary for older versions of the tools

* The tools for 5.0 and 6.0 work out of the box

— Handle SignatureTool's need for a GUI, even when running fully
automated (Xvfb is useful for this)

Build Automation

Common Processes -. CON 2010

* Build steps
— Build the code
— Sign the COD files
— Package for Over-the-Air (JAD) distribution
— Package for Desktop-Loader (ALX) distribution

* Build server process
— Checkout latest code from repository
— Run the build steps
— Copy artifacts to an accessible location

— Clean

Build Automation

Server software options CON 2010

e Cruise Control - http://cruisecontrol.sourceforge.net/

— Java-based, highly configurable, highly flexible
— Also quite complicated to configure and manage

— Originally, | used a CC-based build server, which worked fairly well

e Bitten - http://bitten.edgewall.org/

— Python-based, designed as a plugin for Trac
— Switched to this, since | use Trac for everything else | currently do

— Sufficiently flexible, and simple to configure

http://cruisecontrol.sourceforge.net/�
http://bitten.edgewall.org/�

Build Automation

Server software considerations CON 2010

* Many systems (or at least their web examples) oversimplify the problem:
— They assume its just checkout/build/[test]/done
— It might actually be more involved than that
* Sometimes you need configuration data or build steps not in the repository:
— Paths to the RIM tools
— Passwords for the code signing keys
— Means of passing the build number to the build process for embedding
— Scripts to post artifacts in useful locations on file/web servers
* Running unit tests is not so practical here, unfortunately
— Currently no easy way to run tests without the simulator

— Not so easy to integrate the BlackBerry simulator into the build process

The “Recall” application DEVCON 2010

* Provides a complete Eclipse workspace demonstrating:

— Application and Unit tests with shared code
* Functional sample application
* J2MEUnit with a BlackBerry test runner Ul
— Support for multiple OS versions (4.5, 4.6, 5.0+)
* Abstract factories for instantiating the right classes
* Composition-based screen construction
* Not a single use of the preprocessor
— Automatable builds with BlackBerry Ant Tools
e Build, Sign, and Package (JAD and ALX)

Summary =HMWCON 2010

 Developers and Build Servers have different needs

 There are many tricks for targeting different OS versions
from the same source tree

* You don’t have to build the same way in all contexts

« Automated builds have some additional considerations you
may not think about on the developer’s workstation

For More Information : CON 2010

e Build tools

— Apache Ant: http://ant.apache.org/

— BlackBerry Ant Tools: http://bb-ant-tools.sf.net/

— Sun J2ME Wireless Toolkit (for “preverify” on non-Windows)

e http://www.oracle.com/technetwork/java/download-2-5-1-138417.html

e http://java.sun.com/javame/downloads/sdk30 mac.jsp

* With enough web-hunting, you may even find the older version of the J2ME Tools for Solaris

* Build servers

— Cruise Control: http://cruisecontrol.sourceforge.net/

— Bitten: http://bitten.edgewall.org/

http://ant.apache.org/�
http://bb-ant-tools.sf.net/�
http://www.oracle.com/technetwork/java/download-2-5-1-138417.html�
http://java.sun.com/javame/downloads/sdk30_mac.jsp�
http://cruisecontrol.sourceforge.net/�
http://bitten.edgewall.org/�

*#zBlackBerry.

DEVCON 2010

Thank You

Derek Konigsberg
COM12
September 29t 2010

L:_:: VE working together.

	Layout, Configure and Build Strategies�for BlackBerry Apps
	Session Surveys
	Introduction
	Overview
	What we want to accomplish
	Or in other words…
	Two environments to consider
	Project Layout�Preprocessor vs. Libraries
	Project Layout�Eclipse Projects
	Project Layout�Dependency Tree
	Loading the right code at runtime
	ThingFactory
	PlatformUtils
	Additional uses of platform factories
	Platform-dependent base class problem�The situation
	Platform-dependent base class problem�Available choices
	Platform-dependent base class problem�The composition approach
	Platform-dependent base class problem�The composition approach
	Source control
	Build Automation�Output Choices
	Build Automation�Toolchain
	Build Automation�Toolchain – RIM Build Tools
	Build Automation�Common Processes
	Build Automation�Server software options
	Build Automation�Server software considerations
	The “Recall” application
	Summary
	For More Information
	Thank You

