
Layout, Configure and Build Strategies
for BlackBerry Apps

Derek Konigsberg
COM12

September 29th 2010

Session Surveys

• Remember to complete your breakout
session evaluation in one of two ways:

– On your BlackBerry® smartphone – use the
DEVCON 2010 mobile guide, from Pyxis

– Login to My Scheduler at one of the
Cyber Zone locations or on your PC

Introduction

• About me
– Derek Konigsberg – dkonigsberg@logicprobe.org

– Desktop Java developer by day

– Mobile Java developer by night

• BlackBerry platform involvement
– Active member of the community, having presented on both

BlackBerry Java Development and Open-Source Software

– Best known for the “LogicMail “ standalone E-Mail client application

• http://logicmail.sf.net/

• The reason I got started developing for BlackBerry

• Has become a popular alternative to BES/BIS offerings

• Supports OS 4.2 through OS 6.0 from a single source tree

http://logicmail.sf.net/�

Overview

• Introduction to the environment

• Project layout approaches

• Source control considerations

• Build automation

• Summary and conclusions

What we want to accomplish

• Support as many BlackBerry OS versions as possible
– Using a single code base with maximal reuse

– Taking advantage of features in newer BlackBerry OS versions

– Releasing for all OS versions in tandem

• Make life easy for the individual developer
– Single IDE workspace configuration

– Equally easy to test on all supported OS versions

• Support configuration management, continuous integration,
and build automation

Or in other words…

Two environments to consider

• The Developer's Workstation
– Uses the Eclipse plugin as it is intended

– Contains the entire project within a single workspace

– Testing on different BlackBerry OS versions needs to be simple

– Running unit tests should be as simple as possible

• The Build Server
– Uses a scripted build process

– Build artifacts become more important than the projects they are
created from

– Fully automated, including signing, for multiple BlackBerry OS versions

Project Layout
Preprocessor vs. Libraries

• The preprocessor approach is very
tempting…

– It seems very simple to use

– It allows one code library to target all
supported BlackBerry OS API versions

• However…
– You might still have issues if you want

to exclude whole files

– Java tools really do not like
preprocessors

– Eclipse will get very annoyed with
you, and cover your code in red
squiggles

– You have to change configurations
and rebuild for each OS version you
want to test on

• Libraries might seem complicated at
first…

– Need more projects, with different
OS API version dependencies

– Selectively loading code can be tricky

• But its well worth it:
– Eclipse is happy with your source

code

– Will not accidentally break API
compatibility

– Testing a different BlackBerry OS API
is as simple as running a different
simulator configuration

With some practices and patterns, you can completely avoid the preprocessor

Project Layout
Eclipse Projects

• “Library” projects:
– recall_lib – main application code

• Targets lowest-common-denominator API version

– recall_lib_bb46, recall_lib_bb50

• Separate libraries for each additionally-supported API version

• Can depend on each other, for maximal reuse

– J2MEUnit – unit test support library

• “BlackBerry Application” projects:
– recall – main and alternate entry points

– recall_tests – unit tests, and entry point for running unit tests

Project Layout
Dependency Tree

recall

recall_lib_bb46recall_lib recall_lib_bb50

recall_tests

J2MEUnit

Loading the right code at runtime

• BlackBerry/J2ME lacks real reflection
– Real reflection would make this a lot easier

– At least you do have “Class.forName()”

• The “Abstract Factory Pattern” is your friend
– Top-level abstract class: ThingFactory

• Knows the fully-qualified names of all subclasses, as strings

• Has the usual singleton “getInstance()” method

• Has abstract methods for different functionality

– Platform-specific subclasses: ThingFactoryBB45, ThingFactoryBB46

• Can inherit from each other, in order

• Implement functionality not available in the base API

ThingFactory

public abstract class ThingFactory {

private static ThingFactory instance;

private static String[] factoryClasses = {

"net.test.hello.ThingFactoryBB50",

"net.test.hello.ThingFactoryBB46",

"net.test.hello.ThingFactoryBB45"

};

public static synchronized ThingFactory getInstance() {

if(instance == null) {

instance = (ThingFactory)PlatformUtils.getFactoryInstance(

factoryClasses);

}

return instance;

}

public abstract Field getThingField();

}

PlatformUtils

public static Object getFactoryInstance(String[] factoryClasses) {

// Get a class reference for the concrete factory

Class factoryClass = null;

for(int i=0; i<factoryClasses.length; i++) {

try {

factoryClass = Class.forName(factoryClasses[i]);

} catch (ClassNotFoundException e) { }

if(factoryClass != null) { break; }

}

if(factoryClass == null) {

throw new RuntimeException("Unable to instantiate factory");

}

// Instantiate the concrete factory

try {

Object instance = factoryClass.newInstance();

return instance;

} catch (InstantiationException e) {

throw new RuntimeException("Unable to instantiate " + factoryClass.getName());

} catch (IllegalAccessException e) {

throw new RuntimeException("Unable to instantiate " + factoryClass.getName());

}

}

Additional uses of platform factories

• Instantiating different fields or screens, depending on platform
– Touchscreen vs. Keyboard

– BrowserField vs BrowserField2

– RIM-provided FilePicker vs custom-written FilePicker

• Providing multiple versions of your "open a network
connection" code

– Minor variations from 4.2 to 4.7

– Completely new API in 5.0+

• Providing top-level platform-info utility methods
– "What OS am I running?" varies by API version

– "Do I have a touchscreen?" method call is unavailable pre-4.7

Platform-dependent base class problem
The situation

• Sometimes you have a standard parent class, used all over
– This class provides hooks to your application’s infrastructure code

– You might want to have different standard behavior depending on OS
version or device input type

• This class inherits directly from a RIM framework class
– That framework class keeps evolving

– You need to override certain methods that don't exist on older APIs,
and those methods have arguments of types that don't exist on older
APIs

– For example: net.rim.device.api.ui.Screen

• New in 4.7: Screen.touchEvent(TouchEvent message)

• More new members in: 3.6.0, 4.0.0, 4.0.2, 4.2.0, 4.3.0, 4.6.1, 4.7.0, 6.0.0

Platform-dependent base class problem
Available choices

• This leaves you with the following choices:
– Use the preprocessor

• Sure, its tempting here

• But then you lose the advantages of being preprocessor-free

– Create platform-library subclasses

• Suddenly you have to subclass all of your screens

• You lose the advantages of a common parent class

– Refactor to avoid inheriting from the framework

• We can transform an inheritance problem into composition

• With composition, this fits very nicely with our factories

• Can build different screens depending on OS version and input method

Platform-dependent base class problem
The composition approach

• StandardScreen, StandardTouchScreen
– Inherits from the framework; fairly lightweight and stub-like

– Exists in as many variations as necessary for platform support

– Successive versions can inherit from each other for reuse

• ScreenProvider interface
– Specifies all methods of RIM's screen class you need access to

– Has no API dependencies past your base API

– Contains additional methods your StandardScreen may need

• AbstractScreenProvider
– Boilerplate implementation of StandardScreen

– Provides standard implementations of most methods

– Also has no API dependencies past your base platform

Platform-dependent base class problem
The composition approach

net.rim.device.api.ui.container.MainScreen

StandardScreen

AppHomeScreen AppConfigScreen AppActionScreen net.rim.device.api.ui.container.MainScreen

StandardScreen
ScreenProvider
<<interface>>

AbstractScreenProvider

AppHomeScreen AppConfigScreen AppActionScreen

Source control

• What to check in:
– Nothing at the workspace

level

– At the project level:
• .project

• .classpath

• .settings/org.eclipse.jdt.core.prefs

• BlackBerry_App_Descriptor.xml

• res/**

• src/**

• What to explicitly ignore:
– At the workspace level:

• .metadata/

– At the project level:

• .locale_interfaces/

• .preprocessed/

• bin/

• deliverables/

Note: These lists may change as RIM updates their development tools

Build Automation
Output Choices

Follow the IDE project structure
• Pros

– Maintains uniformity between
environments

– Minimizes total number of COD files

• Cons
– Maximizes the number of per-install COD

files

– Possible library-linking issues

– Still may have to do multiple builds of the
startup project to avoid compatibility
mode on touch devices

– Increases complexity of ALX and JAD files

Ignore the project structure and
build it flat

• Pros
– Minimizes the number of per-install COD

files

– Users only install a minimal, flat, COD
sibling set

– No library-linking issues

– ALX and JAD files are simpler

• Cons
– Minor issues with deprecated/changed

APIs

– More total COD files to build/sign

– Deployment may not exactly match
development

Build Automation
Toolchain

• Apache Ant - http://ant.apache.org/

• BlackBerry Ant Tools - http://bb-ant-tools.sf.net/
– Runs the RAPC compiler

– Runs the SignatureTool

– Creates the ALX file and directory structure

– Updates JAD file and extracts COD siblings

• RIM Build Tools (for each target OS version)
– Known by many names:

• BlackBerry Java SDK (Eclipse plugin)

• BlackBerry JDE (legacy IDE)

• BlackBerry JDE Component Package (just the build tools)

http://ant.apache.org/�
http://bb-ant-tools.sf.net/�

Build Automation
Toolchain – RIM Build Tools

• All you really need is a subset of the distribution:
– bin/

• rapc.jar, preverify.exe, SignatureTool.jar

• sigtool.csk, sigtool.db

– lib/

• net_rim_api.jar

• You can build on a *NIX server, if you:
– Grab another version of "preverify" from non-RIM J2ME tools

– Fix the hard-coded backslashes in rapc.jar and SignatureTool.jar
• Only necessary for older versions of the tools

• The tools for 5.0 and 6.0 work out of the box

– Handle SignatureTool's need for a GUI, even when running fully
automated (Xvfb is useful for this)

Build Automation
Common Processes

• Build steps
– Build the code

– Sign the COD files

– Package for Over-the-Air (JAD) distribution

– Package for Desktop-Loader (ALX) distribution

• Build server process
– Checkout latest code from repository

– Run the build steps

– Copy artifacts to an accessible location

– Clean

Build Automation
Server software options

• Cruise Control - http://cruisecontrol.sourceforge.net/
– Java-based, highly configurable, highly flexible

– Also quite complicated to configure and manage

– Originally, I used a CC-based build server, which worked fairly well

• Bitten - http://bitten.edgewall.org/
– Python-based, designed as a plugin for Trac

– Switched to this, since I use Trac for everything else I currently do

– Sufficiently flexible, and simple to configure

http://cruisecontrol.sourceforge.net/�
http://bitten.edgewall.org/�

Build Automation
Server software considerations

• Many systems (or at least their web examples) oversimplify the problem:

– They assume its just checkout/build/[test]/done

– It might actually be more involved than that

• Sometimes you need configuration data or build steps not in the repository:

– Paths to the RIM tools

– Passwords for the code signing keys

– Means of passing the build number to the build process for embedding

– Scripts to post artifacts in useful locations on file/web servers

• Running unit tests is not so practical here, unfortunately

– Currently no easy way to run tests without the simulator

– Not so easy to integrate the BlackBerry simulator into the build process

The “Recall” application

• Provides a complete Eclipse workspace demonstrating:
– Application and Unit tests with shared code

• Functional sample application

• J2MEUnit with a BlackBerry test runner UI

– Support for multiple OS versions (4.5, 4.6, 5.0+)

• Abstract factories for instantiating the right classes

• Composition-based screen construction

• Not a single use of the preprocessor

– Automatable builds with BlackBerry Ant Tools

• Build, Sign, and Package (JAD and ALX)

Summary

• Developers and Build Servers have different needs

• There are many tricks for targeting different OS versions
from the same source tree

• You don’t have to build the same way in all contexts

• Automated builds have some additional considerations you
may not think about on the developer’s workstation

For More Information

• Build tools
– Apache Ant: http://ant.apache.org/

– BlackBerry Ant Tools: http://bb-ant-tools.sf.net/

– Sun J2ME Wireless Toolkit (for “preverify” on non-Windows)
• http://www.oracle.com/technetwork/java/download-2-5-1-138417.html

• http://java.sun.com/javame/downloads/sdk30_mac.jsp

• With enough web-hunting, you may even find the older version of the J2ME Tools for Solaris

• Build servers
– Cruise Control: http://cruisecontrol.sourceforge.net/

– Bitten: http://bitten.edgewall.org/

http://ant.apache.org/�
http://bb-ant-tools.sf.net/�
http://www.oracle.com/technetwork/java/download-2-5-1-138417.html�
http://java.sun.com/javame/downloads/sdk30_mac.jsp�
http://cruisecontrol.sourceforge.net/�
http://bitten.edgewall.org/�

Thank You
Derek Konigsberg

COM12
September 29th 2010

	Layout, Configure and Build Strategies�for BlackBerry Apps
	Session Surveys
	Introduction
	Overview
	What we want to accomplish
	Or in other words…
	Two environments to consider
	Project Layout�Preprocessor vs. Libraries
	Project Layout�Eclipse Projects
	Project Layout�Dependency Tree
	Loading the right code at runtime
	ThingFactory
	PlatformUtils
	Additional uses of platform factories
	Platform-dependent base class problem�The situation
	Platform-dependent base class problem�Available choices
	Platform-dependent base class problem�The composition approach
	Platform-dependent base class problem�The composition approach
	Source control
	Build Automation�Output Choices
	Build Automation�Toolchain
	Build Automation�Toolchain – RIM Build Tools
	Build Automation�Common Processes
	Build Automation�Server software options
	Build Automation�Server software considerations
	The “Recall” application
	Summary
	For More Information
	Thank You

